Outline

Introduction

_.

Piasma

Outlook

Controlled thermonuclear with tokamak

Richard Marchand University of Alberta, Canada Richard.Marchand@ualberta.ca

International Nathagali Summer College August 4-16 2014

Outline

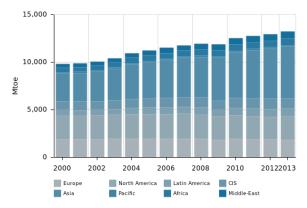
Outline

1 Introduction: Problems with existing energy sources

2 Alternative: Nuclear fusion

3 Basic plasma physics

4 Outlook


World energy consumption

Outling

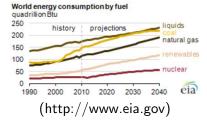
Introduction

Б.

Outloc

Mtoe = "million tonne of oil equivalent"
 (http://yearbook.enerdata.net/)

Outling


Introduction

.....

Dlacma

Outlool

Energy consumption by type

Fossil fuel reserves - Oil

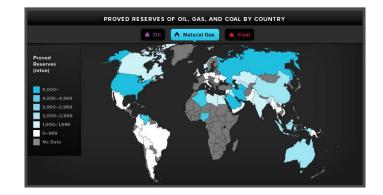
Outline

Introduction

Plasma

Outlo

http://www.energyrealities.org/chapter/ourresources/item/proved-reserves-of-fossilfuels/erp6F0E6DFD5D4365155


Fossil fuel reserves - Gas

0......

Introduction

Plasma

Outloo

Fossil fuel reserves - Coal

Outling

Introduction

Plasma

Outloo

Controlled thermonuclear with tokamak

Numbers

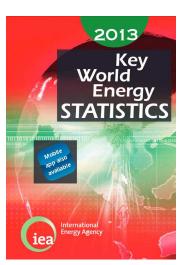
Outline

Introduction

.....

Plasma

Outloo


http://www.eia.gov/

EEA Technical report | No 17/2

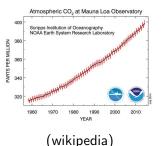
Climate and energy country profiles — Key facts and figures for EEA member countries

195W 1725-2237

http://www.eea.europa.eu/

http://www.iea.org/

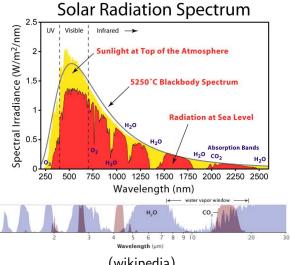
Arithmetic


Outline

Introduction

Diame

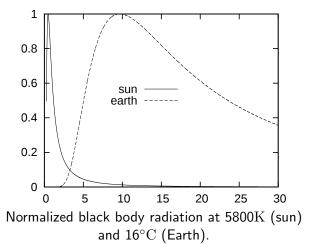
Outloo


- Total energy reserves $\sim 2000 {
 m Mtoe}$
- ullet Assume a steady consumption of $\sim 15 \mathrm{Mtoe}$ per year
- $\rightarrow \gtrsim 130$ years worth of supplies.
- Problem: Green house gases and climate changes.

Green house effect

Introduction

Absorption


Controlled thermonuclear with tokamak

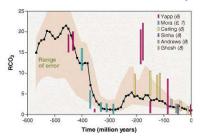
O

Introduction

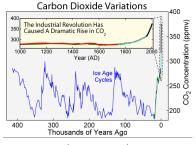
0.....

Incident and radiated spectrum

The radiation spectrum from Earth is shifted toward longer wavelengths, compared to that of the sun.


Controlled thermonuclear with tokamak

Outling


Introduction

Outloo

Is CO_2 really bad?

 $http://earthguide.ucsd.edu/virtualmuseum/climatechange 2/07_1.s$

What are the alternatives?

Outline

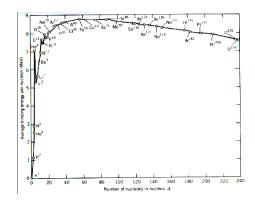
Introduction

Plasm

Outloo

- Do nothing
- Nuclear
- Renewable
 - Hydro
 - Wind
 - Tides
 - Solar
 - Geothermal

Nuclear energy


Outline

Introduction

Fusion

Plasm:

Outlool

Exothermic nuclear reactions:

• *A* < 26: Fusion

• *A* > 26: Fission

Fission

Outline

Introduct

Fusion

Plasm

Outlo

- \bigcirc
- Relatively easy to achieve.
- Much more efficient than fossil fuels.
- Can generate high power densities.
- Can be close to cities and industrial centres.
- (
- Activates radioactive materials ($\gtrsim 100$ years).
- Limited supplies: \gtrsim 500 years; more with breeder reactors.
- Produces long term toxic and radioactive waste ($> 10^4$ years).
 - See the movie "Into Eternity".

Outline

Introductio

Fusion

Plasm

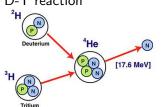
Outloc

- Energetically much more efficient.
- Fuel is abundant and practically limitless.
- Produces short lived ($\lesssim 100$ years) radioactive materials.

• Technically much more difficult.

How does it work?

Outline


Introduction

Fusion

Plasma

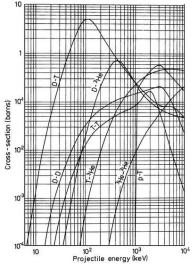
Outloo

Aneutronic reactions

Aneutronic reactions
$${}^{2}D + {}^{3}He \rightarrow {}^{4}He + {}^{1}p + 18.3 \text{ MeV}$$

$${}^{2}D + {}^{6}Li \rightarrow 2 {}^{4}He + {}^{2}He + 22.4 \text{ MeV}$$

$${}^{1}p + {}^{6}Li \rightarrow {}^{4}He + {}^{3}He + 4.0 \text{ MeV}$$


$${}^{3}He + {}^{6}Li \rightarrow 2 {}^{4}He + {}^{1}p + 16.9 \text{ MeV}$$

$${}^{3}He + {}^{3}He \rightarrow {}^{4}He + 2 {}^{1}p + 12.86 \text{ MeV}$$

$${}^{1}p + {}^{7}Li \rightarrow 2 {}^{4}He + 17.2 \text{ MeV}$$

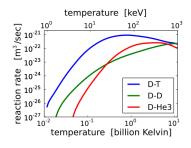
$${}^{1}p + {}^{11}B \rightarrow 3 {}^{4}He + 8.7 \text{ MeV}$$

$${}^{1}p + {}^{15}N \rightarrow {}^{12}C + {}^{4}He + 5.0 \text{ MeV}^{[2]}$$

(Wikipedia)

Lawson's condition

Outline


Introductio

Fusion

Piasma

Outloo

- Consider D-T for which the cross section is the highest.
- The maximum cross section is obtained at energy $E \simeq 10^5 eV$

(wikipedia)

- From $E=\frac{e^2}{4\pi\epsilon_0}d$, in a 'head on' collision, the two nuclei come $\sim 14fm$ apart.
- Reaction rates for a thermal plasma involves an average over a Maxwellian velocity distribution.
- In order to 'ignite' at $T \sim 20 \mathrm{keV}$ a fusion plasma must satisfy $n\tau_F \gtrsim 3 \times 10^{19} \mathrm{sm}^{-3}$.

Possible approaches

Outline

Introduction

Fusion

1 103111

Outloc

- Cold fusion
- Muon-catalyzed fusion
- Magnetic confinement
 - Toroidal devices: stellerators, tokamaks, bumpy torus, spheromaks, reversed pinches ...
 - Mirrors
 - Self-colliding beams (Migma proposed by Maglish in the early 70s).
- Inertial confinement
 - Laser & particle fusion
 - Non conventional approaches.

Basic facts and principles

Outline

Introduction

Plasma

Outloo

How do electrons and ions gyrate?

- a) Both clockwise
- b) Both counterclockwise
- c) Electrons clockwise, ions counterclockwise
- d) Electrons counterclockwise, ions clockwise

In addition to gyrating, charged particles also travel along magnetic field lines.

Adiabatic invariants

Outline

Introduction

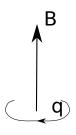
_ .

Plasma

Outlo

- From classical mechanics, $\oint \vec{p} \cdot d\vec{q}$ is an adiabatic invariant, that is, this quantity remains nearly constant when the system changes 'slowly' compared to an orbit period.
- Here \vec{p} and \vec{q} are canonical momentum and coordinates respectively.
- In Cartesian coordinates, for a non relativistic particle, $\vec{p} = m\vec{v} + q\vec{A}$.
- In plasma, there are three adiabatic invariants:

VILLI LOKALIIAK


Outline

Introduction

Fusion

Plasma

Outlook

First adiabatic invariant

•
$$\vec{p} \simeq m\vec{v} - \frac{q}{2}\vec{r} \times \vec{B}$$

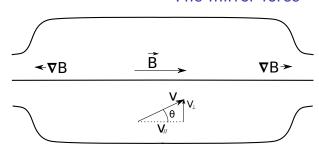
•
$$\vec{r} = \rho_L \left[\cos(\Omega t) \hat{x} - \sin(\Omega t) \hat{y} \right]$$

•
$$\vec{v} = v_{\perp}(-\sin(\Omega t)\hat{x} - \cos(\Omega t)\hat{y})$$

where $v_{\perp} = \Omega \rho_L$
 $\rightarrow \mu = \frac{mv_{\perp}^2}{2B}$ corresponds to the magnetic moment of the gyrating

 $\rightarrow \mu = \frac{1}{2B}$ corresponds to the magnetic moment of the gyrating particle.

The mirror force


Outling

Introduction


_.

Plasma

Outlook

- If $\vec{E}=0$, $\frac{mv^2}{2}=\frac{mv_{\parallel}^2}{2}+\mu B=$ constant. $\rightarrow |v_{\parallel}|$ decreases when approaching regions where B is large \rightarrow Trapping.
- \rightarrow Trapping when $\mu B_{max} = \frac{mv_{\perp}^2}{2B_{min}} B_{max} \ge mv^2/2$ or $\theta > \theta_I$.
- ightarrow loss cone angle $heta_L = \mathrm{asin}\left(\sqrt{rac{B_{min}}{B_{max}}}
 ight)$
- $\vec{F}_m = -\mu \nabla B$

Outline

Introduction

Plasma

Plasma

Outloo

- Periodic motion: Bouncing back and forth of a particle along field lines, between two (high B) turning points.
- In this case, $\oint \vec{A} \cdot d\vec{r}$ cancels and only the kinetic part of the momentum contributes
- $\rightarrow J = \oint \vec{v}_{||} \cdot d\vec{r}$

Particle drifts

Outline

Introduction

Plasma

Outloc

- In a presence of a straight, uniform and constant magnetic field, the motion of a charged particle exhibits a helix.
- When an electric field is present, however, the motion describes a cycloid with a drift velocity $v_{E\times B}=\frac{\vec{E}\times\vec{B}}{B^2}$.
- In the frame moving with that velocity, the electric field vanishes and the particle motion again describes a helix.
- The situation is more complex when there are other forces, when the fields $(\vec{B} \text{ or } \vec{E})$ are not uniform or when they vary in time.
- In the presence of a force field \vec{F} , the drift is given by

$$\vec{v}_D = rac{\vec{F} imes \vec{B}}{qB^2}$$

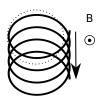
Grad-B drift

Outline

Introduction

Plasma

Outloc


Grad-B drift:

$$\vec{v}_{\nabla B} = -\frac{\mu}{qB^2} \nabla B \times \vec{B}$$

$$= -\frac{mv_{\perp}^2}{2qB^3} \nabla B \times \vec{B}$$

В

•

- Particles of different charges drift in different directions.
- ullet ightarrow currents.

Curvature drift

Outline

Introduction

Plasma

Piasma

Outloo

• Here the force is the 'centrifugal' force:

$$\vec{F}_c = -m v_{||}^2 \hat{b} \cdot \nabla \hat{b}$$

The associated drift is

$$ec{v}_c = -rac{mv_\parallel^2}{qB^2}\left(\hat{b}\cdot
abla\hat{b}
ight) imesec{B}.$$

• For a low β plasma; that is, when $\beta = \frac{nkT}{B^2/\mu_0} \ll 1$, this drift can be written in almost the same form as the curvature drift:

$$ec{v}_c \simeq -rac{mv_\parallel^2}{qB^3}
abla B imes ec{B}$$

Remarks about drifts

Outline

Introduction

Plasma

Outloo

- Only the $\vec{E} \times \vec{B}$ drift does not lead to a current. For all other drifts, particles of different mass or charge are affected differently.
- There are other forces and associated drifts (e.g., associated with gravity).
 Those can be important in astrophysical plasma, but they are negligible in tokamaks.
- Drifts are only perturbations to particle trajectories moving along circular (helicoidal) orbits to lowest order.
- The small parameter in the perturbation expansion is effectively $\frac{1}{B}$, or more precisely $\frac{mv_{\perp}}{qBL}$.
- All drifts seen so far are first order in this small parameter.

Eucion

Plasma

Outloo

• The polarization drift

$$\vec{v}_p = \frac{m\dot{\vec{E}}}{B^2}$$

is the exception. It is second order in 1/B.

- \vec{v}_p is important in tokamak equilibrium and drift waves because of the large ion to electron mass ratio. In practice it only affects ions and it is negligible for electrons.
- Because of the polarization drift, plasma behaves as a medium with high dielectric constant (polarizability) in the direction perpendicular to \vec{B} (See Kulsrud's "Plasma Physics for Astrophysics").
- If 1/B is not a small parameter, then the whole concept of drifts breads down, and particle trajectories must be integrated in detail.

er er er er

Fusio

Plasma

Outloo

Third adiabatic invariant Φ

- In certain magnetic field configurations (particles ∇B or curvature-drift across field lines as they gyrate around and bounce back and forth along magnetic field lines.
- The resulting quasi-periodic drift motion → Third adiabatic invariant.

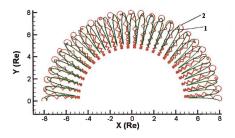


Figure 2.3: Projection in the XY plane of calculated trajectory of trapped protons using both guiding centre equations (label 1) and full Lorentz equations of motion (label 2) in a dipole field. In both cases, the proton is located initially at $x=8R_e$, y=0, with initial energy 1MeV and a pitch angle of 30°.

(Ding Li, MSc thesis UofA 2006)

Physical meaning of Φ

Outline

Introduction

Б.

Plasma

Outloo

$$\Phi = \oint d\vec{r} \cdot \left(\underbrace{\vec{m}\vec{v}}_{\text{small}} + q\vec{A} \right)$$

$$\approx \oint d\vec{r} \cdot \vec{A} = \iint da \, \nabla \times \vec{A} \cdot \hat{n} = \iint da \, \vec{B} \cdot \hat{n}$$

 $\rightarrow \Phi$ represents the magnetic flux enclosed in in the quasi-periodic drift motion.

Occurrence:

- Linear confinement devices such as mirrors.
- Planetary and astrophysical~ dipole magnetic fields

Final remarks on invariants

Outline

Introduction

Б.

Plasma

Outloo

- 'Invariants' are \sim constant if the system changes slowly compared to a full revolution period.
- They are 'asymptotically' constant: They should be expressed as an asymptotic series (M Kruscal, J. Math. Phys. 3, 806-28 1962).
- μ is associated with the shortest revolution period. It is the 'best conserved' invariant.
- J is associated with a longer revolution period.
 It is involved in 1st and 2nd order Fermi acceleration.
- Φ is associated with the longest revolution period.
 It is the 'least well' conserved invariant.

Controlled thermonuclear with tokamak

0..........

Introduction

Plasma

. .

How well is μ conserved?

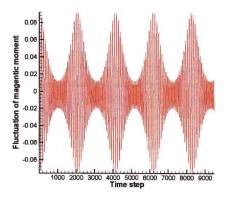


Figure 2.4: Variation in the magnetic moment calculated from a full Lorentz particle trajectory integration. The particle has the same initial conditions as in Figure 2.3.

$$\Delta \mu = \frac{\mu - \mu_0}{\mu_0} \propto \epsilon = \frac{\rho}{l}. \tag{2.20}$$

(Ding Li, MSc thesis UofA 2006)

Magnetic confinement

Outline

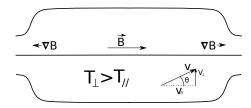
Introduction

Plasm

Outlook

- Charged particles 'stick' to magnetic field lines. They gyrate around and travel along \vec{B} .
- Magnetic confinement can be separated from material boundaries
- This is important considering the high temperature plasma needed to achieve fusion.
- Particles can drift slowly to nearby magnetic field lines.
 The magnetic field configuration must be such that these drifts effectively cancel.

Magnetic bottle: mirror machine


Outling

Introduction

DI

F IdSIIId

Outlook

Fraction of velocity space in which particles are trapped:

$$\int_0^{\cos(heta_L)} d\mu = \cos(heta_L) \simeq 1 - rac{B_{min}}{B_{max}}$$

Solution:

- Make sufficiently long mirrors.
- Make B_{max}/B_{min} "large enough".

Mirror machine: Problems

Outline

Introduction

Diamo

Plasma

Outlook

- Coulomb collisions, → diffusion of particles in the loss cone → loss of confinement.
- Increasing B_{max}/B_{min} doesn't help much because the confinement time scales logarithmically with (B_{max}/B_{min}) : $\tau \propto \ln{(B_{max}/B_{min})}$.
- There are strong instabilities caused by velocity anisotropy $(T_{\perp} > T_{\parallel}).$

This concept was abandoned in the early 1980s.

Controlled thermonuclear with tokamak

Magnetic Fusion Test Facility

Outline

Introduction

_.

(http://www.energy.gov/articles/photo-week-mirror-fusion-test-facility)

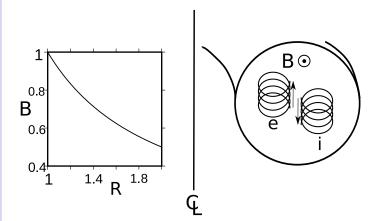
Confinement in a torus

Outline

Introduction

_.

r IdSIIId

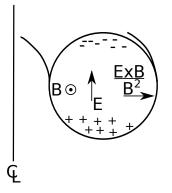

- Field lines trace closed flux surfaces
 - \rightarrow There are no 'ends' where particles can be lost.
- Relatively simple, especially in tokamaks where coil winding is topologically simple.
- Stability is well understood theoretically, computationally and empirically.
- Classical/neoclassical transport is well understood.

Outline

Introduction

Fusion

Plasma

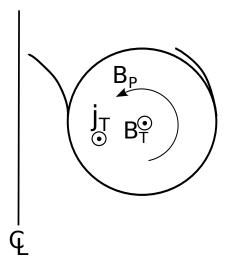


Loss of particles

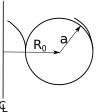
Outline

Introduction

Plasma


- In a finite density plasma, drifts \rightarrow electric field $\rightarrow \vec{E} \times \vec{B}$ drifts.
- $E = Jt = nev_D t \rightarrow v_{\vec{E} \times \vec{B}} = \frac{nev_D t}{\epsilon_0 B} \sim$ $\rightarrow \text{ displacement} = nev_D t^2 / 2B$
- Loss of particles.

. .


Introduction

Outlook

Solution: rotational transform

Outlook

- Minor radius: a
- Major radius: R
- Inverse aspect ratio: $\epsilon = \frac{a}{R}$
- Rotational transform: ι
- Safety or 'q' factor: $a=\frac{2\pi}{2}$

Some definitions

- Particle confinement time τ_p : Average time spent in the machine by a particle
- Energy confinement time τ_F : In the absence of external sources: $\frac{dE}{dt} = \frac{E_{plasma}}{\tau_E}$. At steady state:

$$E_{plasma} = P_{total} \times \tau_E.$$

- Flux surface: toroidal surface generated by magnetic fields. They can be rational or irrational.
- Magnetic shear: $\Theta = dq/dr$

Some difficulties @

Outline

Introduction

.

Plasm

- Instabilities remain challenging, such as 'tearing instabilities' having to do with reconnection.
- Particle and energy transport is usually not neoclassical.
 There are empirical scaling laws based on existing machines, but it is difficult to make projections for significantly larger future machines.
- Transport is typically governed by turbulence, and that is a very difficult problem.
- There are many difficult technical and engineering problems not yet resolved.

Some technical issues

Outline

Introduction

Plasma

- First wall and plasma-material interaction
 - Neutron bombardment.
 - Erosion, sputtering and redeposition.
 - Disruption damage, particularly in the divertor.
 - Divertor physics.
 - Impurity transport and radiative losses.
- Fueling
 - Neutral beams would not penetrate deeply enough.
 - Pellet injection

More issues

Outline

Introduction

Plasma

- Current drive
 - Inductive
 - Waves (lower hybrid)
 - Neutral beams
 - Bootstrap
- Recycling
 - Most of the fuel in the plasma will diffuse to the edge without burning.
 - It will have to be pumped out or recovered from the blanket and 'recycled' back in the reactor.
- He⁴ ash buildup
- ..

Who participates?

Outline

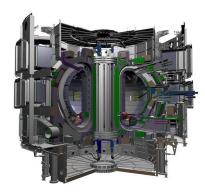
Introduction

DI

Plasm

Outlo

- Many countries have now developed research programs in fusion and in tokamak physics.
- Fusion is much more difficult that anyone had anticipated some 60 years ago.
- Front line research presently focuses on a large international project: ITER
- Domestic Agencies in ITER: China, EU, India, Japan, Korea, Russia, US


Outline

Introduction

Plasma

Outloo

- 2019: Complete tokamak assembly.
 Begin commissioning
- 2020: First plasma
- 2027: Start D-T operations
- Construction cost:
 ~ 13 B €.

(http://www.iter.org/mach)

Outloo

Will it work? If so when?

- ITER is an experimental reactor.
 It is not meant as a demonstration reactor.
- It should be followed by a demo reactor.
- This would eventually be followed by the first commercial reactors.
- Future projects will likely involve large international collaborations.
- They will take many years to be negotiated and decided.